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Abstract. The numerical accuracy of the displacement potential approach for a three-dimensional water-impact
problem is investigated. An examination of the elliptic paraboloid shows that the boundary-value problem for the
displacement potential, as well as the velocity potential, can be solved accurately, even if the panel size of the
numerical scheme is no small enough. The numerical accuracy of the position of the contact line is poor. However,
the accuracy of the virtual mass is good because of the averaging effect along the contact line. A comparison with
Scolan and Korobkin’s designed body confirms the accuracy of the drop speed and the penetration displacement.
The displacement potential approach is extended to the case of water impact with trapped air. The numerical
accuracy of the calculated air pressure in the cavity is confirmed by comparison with an experimental result. With
these results, the suitability of the displacement potential approach to the ship-slamming problem is demonstrated.
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1. Introduction

A typical water-impact problem is the slamming of a ship’s bow in high seas. The impact
loads experienced need to be properly evaluated for the structural design of the ship. It is
obvious that the real impact process of slamming is three-dimensional in nature, and the
two-dimensional analysis, the so-called strip method, may not be accurate. In addition, the
free-surface shape of a realistic sea has a complex three-dimensional configuration, which
makes the three-dimensional effect on slamming even stronger. The three-dimensional im-
pact problem is far from being solved accurately, although numerical methods to solve the
hydrodynamic problem have been widely studied over the last two decades.

If we restrict ourselves to the initial stage of water impact and assume that the body is
blunt and the deformation of the free surface is gentle, the water-impact problem can be greatly
simplified. This means that the body shape close to the initial contact point has a small deadrise
angle, which is the main assumption of Wagner’s theory [1]. During the initial stage of water
impact, the dimensions of the wetted area of the body in the horizontal directions are much
greater than the penetration depth. In addition, the free-surface elevation is of the same order as
the penetration depth. These restrictions make it possible to linearize the boundary conditions
and to impose them on an initially undisturbed free surface.

In the linearized formulation, the deformation of the water surface is identical with the
distortion of the bottom of the body. This is a great advantage in solving the water-impact
problem in a realistic sea, because we can use a combination of distorted body and flat water-
surface instead of flat body and distorted water-surface.
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Most studies treat water impact as a two-dimensional problem since the slender-body the-
ory for ship motion requires that the water-impact problem be solved as a part of the inner
problem, which is usually two-dimensional. The three-dimensional water-impact theory was
studied first by Chuang [2]. He investigated the water impact of cone-shaped bodies. Watanabe
[3] studied the pressure distribution on the inclined flat rectangular bottom of a ship penetrat-
ing the water surface with a three-dimensional flat-plate formulation. Recently, Toyama [4]
presented a theoretical approach to the water-impact problem of three-dimensional bodies.
However, Toyama’s research objective was limited to a simple-shaped body penetrating a
calm water surface.

It is well known that Wagner’s problem has a singularity at the intersection between the
body surface and the water surface, which makes the numerical solution for a general shape
of the body difficult. Takagi [5] employed the displacement potential, which has no singu-
larity at the intersection, to overcome this difficulty. This idea was originally introduced by
Korobkin [6]. Howison, Ockendon and Wilson [7] solved the two-dimensional wedge impact
with this method and reported good agreement with the exact analytical solution. Takagi [5]
extended the method to water impact with trapped air. The displacement-potential approach
has a numerical problem, however, when we seek to evaluate the impact force.

This difficulty was successfully resolved by Donguy et al. [8]. Takagi and Dobashi [9]
also reported resolution of this difficulty in the case of three-dimensional impact with trapped
air. On the other hand, Scolan and Korobkin [10] presented the inverse Wagner theory, which
gives analytical solutions of the three-dimensional impact problem, although the body shape
can only be obtained after solving the problem.

In order to discuss the numerical accuracy of the displacement potential approach to three-
dimensional impact on a blunt body of arbitrary shape, numerical solutions of the displace-
ment potential approach are compared with analytical solutions in Section 3. The cases of an
elliptic paraboloid at a constant drop speed, and the free fall of designed bodies, which have
been reported by Scolan and Korobkin [10] with the inverse Wagner theory, are discussed.
In Section 4, besides comparisons with analytical solutions, a numerical solution of the free
fall of a circular disk with a circular hollow, in which the air is trapped, is compared with an
experiment. Finally, in Section 5 the results obtained are summarized and some directions for
further research on the improvement of the displacement potential approach are outlined.

2. Mathematical formulation

The linear theory of water impact was first formulated by Wagner [1]. Since Wagner’s solution
is an outer solution of the linear theory, it is singular at the contact line between the body
and the free surface. Armand and Cointe [11] solve this problem by applying the matched-
asymptotic-expansion method. According to their formulation, the preferred perturbation para-
meter is the ratio between the penetration depth of the body and the horizontal scale of the
wetted area of the body. Although the overall problem is composed of an outer problem and
an inner problem, only the outer problem is considered here, because the impact force is not
affected by the inner solution at the leading order. We use the following non-dimensional
space and time coordinates:

(x, y, z) =
(

X

R
,
Y

R
,
Z

R

)
, t = V0T

H
, (1)
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Figure 1. Coordinate system.

where R is the typical horizontal scale of the wetted surface of the body, H is the typical
penetration depth and V0 is the initial drop speed. The xy-plane coincides with the calm
water surface, and z is vertically upwards as shown in Figure 1. Linearization is performed by
assuming H/R = ε << 1.

We define the non-dimensional drop speed v(t) = V (t)/V0 of the body onto the water
surface, which is initially calm. Since the body is assumed to drop freely onto the water, its
equation of motion may be

m
dv

dt
= mḡ − f (2)

with

m = M

ρwR3
, ḡ = gH

V 2
0

, f = FH

ρwV 2
0 R3

, (3)

where M is the mass of the body, ρw is the density of water, g is the gravitational acceleration
and F is the impact force due to water and trapped-air pressure. The bottom surface of the
body is represented by

z = εbs(x, y). (4)

The impact force acting on the body is obtained by solving an initial-boundary-value prob-
lem, known as the Wagner theory. This problem has a singularity at the contact line between
the body surface and the water surface. Therefore, we employ the displacement potential,
which has no singularity at the contact line. This idea was originally introduced by Korobkin
[6]. The displacement potential ϕ is defined as:

ϕ(x, y, z, t) =
∫ t

0
φ(x, y, z, τ )dτ, (5)

where φ is the velocity potential. The displacement potential satisfies Laplace’s equation

∇2ϕ = 0 for z < 0. (6)

Integrating the linear kinematic boundary condition on the body surface and the free surface
for the velocity potential with respect to time, we obtain

∂ϕ

∂z
− ξ(t) − bs(x, y) = 0 on z = 0, (x, y) ∈ �b, (7)
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where �b denotes the projection of the wetted part of the body on the plane z = 0. Similarly,
the dynamic condition for the displacement potential on the free surface is:

ϕ = −q(t) on z = 0, (x, y) ∈ �c ∪ �f , (8)

where �c denotes the projection of the cavity on the plane z = 0 and �f denotes the projection
of the outside free surface on the plane z = 0. The functions q(t) and ξ(t) are defined as
follows:

d2q

dt2
= p(t) for (x, y) ∈ �c, (9)

q(t) = 0 for (x, y) ∈ �f , (10)

dξ

dt
= −v(t), ξ(0) = 0. (11)

Combining (7) and (8), we obtain the following linear boundary condition valid for the overall
boundary:

(ϕ + q(t))

(
∂ϕ

∂z
− ξ(t) − bs(x, y)

)
= 0 on z = 0, (x, y) ∈ �c ∪ �b ∪ �f . (12)

In order to obtain the physically correct solution, one of the following additional conditions
must be satisfied:

ϕ ≤ −q(t),
∂ϕ

∂z
− ξ(t) − bs(x, y) ≤ 0 on z = 0, (x, y) ∈ �c ∪ �b, (13)

ϕ ≤ 0,
∂ϕ

∂z
− ξ(t) − bs(x, y) ≤ 0 on z = 0, (x, y) ∈ �b ∪ �f . (14)

The condition (13) is switched to (14) at a certain line in �b. A further assumption is that the
air in the cavity is adiabatic and that its pressure only depends on time

p(t) = β

(
1

ν(t)n
− 1

)
, (15)

β = 1

n

ρa

ρw

(
c0

V0

)2
H

R
, (16)

where n is a constant that is dependent on the gas properties; in the case of air, n = 1·4. The
function ν(t) is the non-dimensional cavity volume, which is expressed as a fraction of the
initial cavity volume, ρa is density of the air and c0 is the speed of sound in air.

The initial-boundary-value problem for the displacement potential is solved by the boundary-
element method in space and the Runge-Kutta method in time. It is apparent from the defini-
tion that the fluid pressure is obtained by differentiating the displacement potential twice with
respect to time. However, differentiation reduces numerical precision. Thus, a new scheme for
estimation of the impact force is considered, in which no differentiation is required, although
one differentiation is required to determine the pressure distribution.

Once we have solved the initial-boundary-value problem for the displacement potential,
the contact line between the body surface and the free surface is known. Thus, we can define
a boundary-value problem for the velocity potential
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∇2φ0 = 0 for z < 0, (17)

φ0 = − 1

v(t)

dq

dt
for (x, y) ∈ �c, (18)

∂φ0

∂z
= −1 for (x, y) ∈ �b, (19)

φ0 = 0 for (x, y) ∈ �f , (20)

where the velocity potential is normalized as φ0 = φ/v(t). The impact force f is obtained by
integrating the linear pressure distribution on the wetted body surface and the air pressure in
the cavity

f = −
∫

�b

∂φ

∂t
ds +

∫
�c

β

(
1

ν(t)n
− 1

)
ds. (21)

After some manipulation, the right side of (21) is transformed into

f = − d

dt

(∫
�b

φ ds

)
+ d

dt

(
dq

dt

∫
�c

ds

)
. (22)

Substituting (22) in (2) and integrating with respect to time yields

v(t) = m(1 + ḡt) − dq

dt

∫
�c

ds

m − ∫
�b

φ0ds
. (23)

The boundary-value problem for the normalized velocity potential φ0 is solved by the boundary-
element method. The instantaneous virtual mass ma(t) is then defined as

ma(t) = −
∫

�b

φ0dS. (24)

3. Numerical scheme

The solution of the boundary-value problem defined by (6), (12), (13) and (14) is represented
as a doublet distribution on the plane z = 0

ϕ(x, y, z) = − 1

2π

∫
�c+�b+�f

ϕ(x′, y′, 0)
z

{(x − x′)2 + (y − y′)2 + z2}3/2
dS. (25)

�f is included in the integral surface for convenience with the numerical scheme. However,
the integration in �f makes no contribution. The computational domain (�c + �b + �f )
is divided into small elements, and the strength of the doublet is piecewise constant. The
computational domain for comparison with the analytical solution in Section 4 is a rectangle.
Since the problem in Section 4 is symmetric, only a quarter plane is divided into N rectangular
panels of size (�X ,�Y ). The collocation point is chosen at the centre of panels on which the
boundary condition is applied. An example of panelling is depicted in Figure 2.

In Section 5, since the problem is axisymmetric, the computational domain for comparison
with experiment is a circle and it is divided radially into NR pieces. The same panelling and
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Figure 2. An example of panelling. This panelling is
used for the entry of an elliptic paraboloid at a con-
stant velocity, and it corresponds to the large panel
(N = 100) appearing in Figures 3, 4 and 5. Thick lines
are analytical contact lines.

Figure 3. Comparison between the numerical result and
the analytical result of the velocity potential along the
line X = 0 m at the time T = 0·2 s for V0 = 1 m s−1

A0 = 0·5 m−1, B0 = 0·25 m−1. N = 100 is the large
panel (�X = 0·085 m, �Y = 0·11 m) and N = 1600 is
the small panel (�X = 0·02125 m, �Y = 0·0275 m).

the doublet distribution is also used for the boundary-value problem of the velocity potential
defined by (17)–(20). However, in the case of the axisymmetric problem in Section 5, a
different panelling with only the wetted surface of the body �b divided into 100 panels at
each time steps is used, since the axisymmetric problem is not time-consuming in spite of its
intricate algorithm.

Combining the discrete integral equation and the boundary condition (12), we obtain a
system of linear equations for the strength of the doublet on each panel. The strength of each
doublet is evaluated by the SOR method with the restriction of (13) or (14). In most cases, the
residual becomes less than O(10−5) after 50 iterations. This scheme is very robust and, even
if the Wagner scheme breaks down, the scheme gives a finite value.

The contact line between the body surface and the free surface is automatically decided
with this scheme, when the strength of the doublet is evaluated. The contact line is a link of
edges of panels on which the magnitude of the velocity potential is −q(t), i.e., the velocity
potential inside this line is less than −q(t). However, the numerical accuracy of the position
of the contact line is not sufficient, since the accuracy of the position of the contact line is of
the same order as the size of the panels.

There are many ways to improve the accuracy for defining the contact line. For example,
fine panels can be fitted along the contact line. However, this process makes the numerical
scheme complicated and possibly less robust. The present scheme is very simple and very
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useful for engineering applications. The accuracy of the definition of the contact line will be
discussed again in the following sections.

4. Comparison with analytical solutions

Scolan and Korobkin [10] developed some analytical solutions of the three-dimensional im-
pact problem by solving the inverse Wagner problem. In order to investigate the accuracy of
the solutions by the displacement-potential approach, comparisons with their solutions are
made.

4.1. ENTRY OF AN ELLIPTIC PARABOLOID AT CONSTANT VELOCITY

The problem of an elliptic paraboloid entering initially calm water at a constant velocity is
considered. The position of the moving body at time t is given by the equation

Z = A0X
2 + B0Y

2 − V0T , (26)

where A0 and B0 are given constants.
A comparison between the numerical result and the analytical result of the velocity poten-

tial is shown in Figure 3. The numerical result for the small panel is in excellent agreement
with the analytical result. Even in the case of a large panel, although some discrepancy is seen
near the contact line, agreement with the analytical result is very good.

A comparison of the contact lines in Figure 4 shows that agreement between the large panel
and the analytical solution is poor. In the worst case (T = 0·05 s, N = 100), the discrepancy
is 17·4% of the width of the wetted surface, with the numerical contact line being a staircase
pattern with its smallest step corresponding to the size of the panel. The contact line depicted
in Figure 4 is a link of edges of panels on which the magnitude of the velocity potential is
zero.

The accuracy of numerical results for the virtual mass is fairly good, even if the panel size
is large, as shown in Figure 5. In the worst case (T = 0·05 s, N = 100), the discrepancy is
4·1% of the exact value.

Since the magnitude of the velocity potential near the contact line approaches zero, inac-
curate definition of the contact line does not seriously affect the result of the integral (24). In
addition, since the numerical contact line crosses the analytical contact line many times, the
averaging effect of integration causes the results to converge. In fact, the difference between
the area of the numerical wetted surface and that of the exact wetted surface is 9·3% in the
worst case, and the magnitude of the velocity potential at edge panels is about one-half of
the average magnitude in the wetted surface. These two results explain the discrepancy of the
virtual mass, which is 4·1% in the worst case.

This result suggests that the numerical accuracy of the drop speed may be good when we
calculate the free fall motion, since drop speed is directly calculated from the virtual mass.
Moreover, it is expected that the numerical accuracy of the penetration depth is better than the
accuracy of the drop speed because of the averaging effect, which erases the fluctuations of
the position of the numerical contact line in time. These predictions will be demonstrated in
the next section by comparisons with analytical results for designed bodies.
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Figure 4. Contact lines at different time instants. Figure 5. Non-dimensional virtual mass ma/ρa2b by
the displacement potential approach at different time in-
stants. N = 400 is the medium panel (�X = 0·0425 m,
�Y = 0·055 m). The analytical value obtained by
Scolan and Korobkin [10] is 1·510.

4.2. FREE FALL OF DESIGNED BODIES

Strictly speaking, the designed-body case is not an analytical solution, since the solution is
evaluated by performing an integral. However, since this integral has no singularity and is not
difficult to evaluate accurately, it may be called an analytical solution when we compare it
with the numerical solutions.

The designed bodies used here have an elliptic contact line whose position at an instant t

is described by the equation

X2

A2(t)
+ Y 2

B2(t)
= 1. (27)

It is convenient to introduce the elliptic eccentricity e(t) = √
1 − (A(t)/B(t))2. In the axisym-

metric case e(t) ≡ 0.
In the following discussion, we use designed bodies of e(t) ≡ 0·9 and e(t) ≡ 0·1. The

shapes of the designed body are found in Figure 11 of [10]. Calculations were performed with
V0 = 4·43 m s−1, M = 100 Kg and g = 9·81 m s−1. The drop speed of the designed body
of e = 0·9 is shown in Figure 6. Agreement between the small-panel result and the analytical
result is very good, and the result for the large panel is in fairly good agreement with the
analytical result. The same tendency can be seen in Figure 7 for e = 0·1.

Figures 8 and 9 show the variation of penetration depth with respect to time. Agreement
between the numerical and analytical results is excellent, even for the case of a large panel.
The good agreement is considered to be due to the averaging effect as explained previously.
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Figure 6. Drop speed of the designed body e = 0·9.
N = 100 is the large panel (�X = 0·12 m, �Y =
0·07 m) and N = 1600 is the small panel (�X =
0·03 m, �Y = 0·0175 m).

Figure 7. Drop speed of the designed body e = 0·1.
N = 100 is the large panel (�X = �Y = 0·08 m) and
N = 1600 is the small panel (�X = �Y = 0·02 m).

Finally, we show the time variation of the semi-axis A(t) and B(t) in Figures 10 and 11,
respectively. Agreement between the small-panel result and the analytical result is fairly good,
but that between the large panel result and the analytical result is very poor. The reason is that
semi-axes A(t) and B(t) of the numerical result are obtained from the positions of the contact
line at Y = 0 and X = 0, respectively, and do not include any averaging effect.

These results confirm that the displacement-potential approach is accurate if we use the
small panel. If we only need the penetration depth, even the large panel gives an accurate
result. However, if we need an accurate position of the contact line, for example when we
calculate the impact force or the impact pressure, even the small panel gives an inaccurate
result.

5. Comparison with experimental results

A free-fall test of an axisymmetric body with attached cavity was carried out by Dobashi
and Takagi [12]. They show only the time history of the pressure in the cavity. Sequential
photographs of the intersection lines are shown in this paper.

5.1. CONDITION OF EXPERIMENT

The body has a circular hollow at the bottom. We assume that this hollow guarantees cavity
formation in advance. The bottom shape of it is represented by a quadratic function Z =
H [(X2 + Y 2)/L2 − 1]2, where H = 0·01 m and L = 0·07 m. The mass of the body is
3·38 Kg.

We prefer the axisymmetric body, because if we use two-dimensional body, it is difficult
to prevent ventilation of the cavity from the gap between the tank wall and the body surface.
In addition, it is easy to construct the experimental body shape accurately, and the numerical
calculation is very accurate if the body is axisymmetric.

The measured drop speed of the model is 0·92 m s−1 at the moment of impact with the
undisturbed water surface. The motion of the body is restrained in the vertical direction by



348 K. Takagi

Figure 8. Time variation of the penetration depth for
e = 0·9.

Figure 9. Time variation of the penetration depth for
e = 0·1.

Figure 10. Time variation of semi-axis A(t) for e = 0·9
and e = 0·1.

Figure 11. Time variation of semi-axis B(t) for e = 0·9
and e = 0·1.

guide rails, and the body falls onto the calm water surface in a water tank (0·45 × 0·45 ×
0·45 m).

Only the air pressure in the cavity is measured, because it is difficult to measure the
pressure on the wetted surface of the body. The difficulty arises because the pressure change
near the spray root is very rapid – i.e., the pressure varies from maximum to zero in a very
small space, which is of the order of the thickness of the spray. Thus, a pressure sensor whose
diameter is much larger than the spray thickness may not register a variation of pressure in
such a small space. Another problem is that usually the lowest resonance frequency of the
pressure sensor for the low-pressure measurement (the maximum pressure for this experiment
may be less than 100 KPa.) is not high enough for the impact pressure, since it is proportional
to the capacity of the pressure sensor.

The air pressure in the cavity is measured with a pressure gauge mounted at the centre of
the hollow. The error range of the experiment is indicated in Figure 12 by an error bar, which
is based on an uncertainty analysis of the measurement system. A mirror is set under the water
tank to observe the formation of the cavity and the spray, and sequential photographs are taken
with the mirror. The time interval of the sequential photos is not constant, since the camera
shutter is controlled by photo sensors, which are placed at intervals of 0·001 m. The first photo
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Figure 12. Comparison between the numerical result and the experimental result of the air pressure in the cavity.

sensor is adjusted so that the first photo is taken at the instant when the bottom of the body
just touches the undisturbed water surface.

5.2. RESULTS OF EXPERIMENT

Figure 12 compares the numerical result with the experimental result for the air pressure in
the cavity. There is a small fluctuation on the time history of the experimental data. This
fluctuation is thought to be due to vibration of the pressure gauge, since the natural period
of the pressure gauge is almost the same as the period of the fluctuation. Except for this
fluctuation, agreement between the numerical and experimental results is good up to the time
t = tF . The discrepancy between the averaged experimental value – i.e., after removing the
small fluctuation – and the numerical estimation at the pressure peak is 13% of the peak value.
At the time t = tF , the Wagner scheme fails as stated in the Appendix. However, the numerical
calculation still gives reasonable results after this time.

Figure 13 shows sequential photos of the bottom surface of the drop body during the initial
stage of the impact. The photos are taken from below. While they may not be sufficient to
confirm the free-surface elevation of the numerical result, since they are taken from only one
direction, the following observation can be made.

The contact lines are visible on the body surface, even though their exact positions are not
clear enough because of the spray. It seems that the contact lines are axisymmetric, while the
spray is not, and a circular cavity is formed at the beginning of the impact. Ventilation does not
occur, even though the pressure in the cavity is negative, as seen in the last shot of Figure 13.
These photos imply that the assumptions used in the present theory are reasonable. However,
in order to confirm the numerical result of the wave elevation, we may need data in the vertical
plane.

6. Conclusion

The numerical accuracy of the displacement approach for the three-dimensional water impact
problem has been investigated. The numerical scheme is applicable for a blunt body of ar-
bitrary shape falling onto the water surface. An examination of the elliptic paraboloid shows
that boundary-value problems for displacement potential and velocity potential can be solved
accurately, even if the panel size of the numerical scheme is large. On the other hand, the
numerical accuracy of the position of the contact line is poor, since the lower limit of the error
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Figure 13. Sequential photos of the contact lines.

of the position cannot be less than the panel size. Accuracy of the virtual mass is good because
of the averaging effect and the characteristic of the pressure distribution along the contact line.
This result implies that we can perform an accurate evaluation of the drop speed of the body.
Comparison with Scolan and Korobkin’s designed body confirms the accuracy of the drop
speed and shows that we can obtain a much better estimation of the penetration displacement
than that of the drop speed.

Estimation of a ship’s strength against water impact is important from an engineering point
of view. When we discuss ship structural response, a mass-and-spring system with two degrees
of freedom is often used – see for example [9]. In this model, the global responses, such as
heave, pitch and distortion modes are represented as a large mass and a hard spring, and the
response of the local structure is represented by a small mass and a weak spring. The equation
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of motion of this model requires the impulse due to water impact as an exciting force, and
induced stress is estimated from the displacement of the body. These values are accurately
estimated by the displacement potential approach.

For more realistic modelling of the ship structure and estimation of the structural response,
modal analysis will be used. In this case, the advantage of the displacement approach may still
be valid. However, if we need fluid-dynamic characteristics, such as the pressure distribution,
the peak pressure and the spray thickness, the numerical results may be unreliable because of
inaccurate differential operations due mainly to the inaccuracy of the position of the contact
line.

The displacement-potential approach has been extended to the case of water impact with
trapped air. The numerical accuracy of the air pressure in the cavity is confirmed by compar-
ison with an experimental result. Sequential photos of the experiment supports the assump-
tions of the linear formulation of the blunt body impact with an attached cavity. These results
suggest the applicability of the displacement-potential approach to the more realistic problem
of a ship slamming with trapped air in rough sea.

Although the displacement-potential approach is appropriate for evaluation of the water-
impact problem, further work may be necessary to improve calculation of the exact position of
the contact line for an accurate estimation of the pressure distribution. The linear formulation
works very well during the early stage of impact. However, it is necessary to study how to
connect this theory to the conventional ship-motion theory in the time domain, to clarify the
effects of the gravity and the non-linearity of the body-boundary condition. The failure of
Wagner’s scheme is another difficulty, which may require further modelling of fluid motion
along the contact line.
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Appendix: Problem of the Wagner scheme

A problem occurs at the time t = tF for the three-dimensional theory in Figure 12 when the
free surface in the cavity cannot be attached at the intersection, and the Wagner scheme fails.
The same situation has been reported by Korobkin [13] in the case of two-dimensional theory.
According to his two-dimensional theory, we investigate the details of this phenomenon.

If the drop speed of the body is a constant V0, the non-dimensional elevation η of the outer
free surface is

η(x, t) =
[

2

π

∫ xc(t)

xa(t)

yb(x
′, t)

x′√(xc(t)2 − x′2)(x′2 − xa(t)2)

x′2 − x2
dx′ − Dc(t)

]

× [
(x2 − xc(t)

2)(x2 − xa(t)
2)

]−1/2

(A1)

and of the inner free surface is

η(x, t) =
[
− 2

π

∫ xc(t)

xa(t)

yb(x
′, t)

x′√(xc(t)
2 − x′2)(x′2 − xa(t)

2)

x′2 − x2
dx′ + Dc(t)

]

× [
(x2 − xc(t)

2)(x2 − xa(t)
2)

]−1/2
,

(A2)
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where xc(t) denotes the intersection point between the outer free surface and the body surface,
xa(t) denotes the intersection point between the inner free surface and the body surface, and
function yb(x, t) = (x2 − 1)2 − t denotes the instantaneous body shape. Dc(t) is evaluated
from the asymptotic form of vertical velocity far from the body. The vertical displacements of
both the outer free surface and the inner one are bounded if

Dc + A2
c(Bc − 1) + Ac(Bc − 1)2 + A3

c

2
− Act = 0, (A3)

Dc + A2
c(Bc − 1) − Ac(Bc − 1)2 − A3

c

2
+ Act = 0, (A4)

where Ac = (x2
c − x2

a)/2 and Bc = (x2
c + x2

a )/2. These two equations lead cubic equation of
A2

c

A6
c − 2tA4

c + 2D2
c = 0 (A5)

It is found that if Dc > 4(t/3)3/2, A2
c has no positive root. This corresponds to the time t = tF .

After this instant, (A3) and (A4) cannot be satisfied simultaneously. Thus, we must weaken
the unbounded condition at the intersection point in the cavity x = xa(t). This problem and
how to continue the simulation after the time instant tF are discussed in detail by Takagi and
Dobashi [9].
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